Quantification of γ -H2AX foci following γ -rays and α -particles in Jurkat cells. Marcus Unverricht¹, Ulrich Giesen², Ralf Kriehuber¹ PURPOSE: Phosphorylation of histone H2AX occurs at sites flanking DNA double-strand breaks (DSBs) and can provide a measure of the number of DSBs within a cell. We investigated whether the mean intensity measured by flow cytometry and the mean number of radiation-induced γ -H2AX foci vary as a function of radiation quality and dose. Furthermore we investigated the relation between the induction of apoptosis and radiation-induced γ -H2AX foci. MATERIALS AND METHODS: Jurkat cells were irradiated with different doses of either low linear energy transfer (LET) 137 Cs γ -rays or high LET 241 Am α -particles. The γ -H2AX foci were detected using immunocytochemistry and quantified by measuring the mean intensity by flow cytometry and counting the number of γ -H2AX foci with a fluorescence microscope. Apoptosis 24h after irradiation was detected via Annexin-V-FITC/ PI-assay. RESULTS: For both radiation qualities, the mean number of γ -H2AX foci is increased as a function of dose and was fairly similar at identical absorbed radiation dose. Apoptosis in Jurkat cells is more efficiently induced by α -particles at similar mean numbers of γ -H2AX foci per cell. The mean γ -H2AX signal intensity of single nuclei is increased after exposure to α -particles when compared to γ -irradiation at the same absorbed radiation dose. CONCLUSIONS: The mean intensity of radiation-induced γ -H2AX foci is dependent on radiation quality in Jurkat cells. ¹ Radiation Biology Unit S-US, Department of Safety and Radiation Protection, Forschungszentrum Jülich, D- 52425 Juelich, Germany ² Physikalisch-Technische Bundesanstalt, D-38116 Braunschweig, Germany